Mollifying the Riemann Zeta-function
نویسنده
چکیده
منابع مشابه
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملA Discrete Mean Value of the Derivative of the Riemann Zeta Function
In this article we compute a discrete mean value of the derivative of the Riemann zeta function. This mean value will be important for several applications concerning the size of ζ(ρ) where ζ(s) is the Riemann zeta function and ρ is a non-trivial zero of the Riemann zeta function.
متن کاملTwisted Second Moments and Explicit Formulae of the Riemann Zeta-Function
Mathematisch-naturwissenschaftlichen Fakultät Doctor of Philosophy Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function by Nicolas Martinez Robles Verschiedene Aspekte, die analytische Zahlentheorie und die Riemann zeta-Funktion verbinden, werden erweitert. Dies beinhaltet: 1. explizite Formeln, die eine Verbindung zwischen der Möbiusfunktion und den nichttrivialen Nullstel...
متن کاملRiemann Hypothesis for function fields
1 1 Preliminaries 1 1.1 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Primes and Divisors . . . . . . . . . . . . . . . . . . . . 2 1.2.2 The Picard Group . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Notation . . . . ...
متن کاملA Note on Infinite Divisibility of Zeta Distributions
Abstract The Riemann zeta distribution, defined as the one whose characteristic function is the normalised Riemann zeta function, is an interesting example of an infinitely divisible distribution. The infinite divisibility of the distribution has been proved with recourse to the Euler product of the Riemann zeta function. In this paper, we look at multiple zeta-star function, which is a multi-d...
متن کامل